3.2.100 \(\int \frac {(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\) [200]

Optimal. Leaf size=235 \[ \frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}} \]

[Out]

(2-2*I)*a^(3/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+268/105*I*a*(a+I*a*tan(d*x+
c))^(1/2)/d/tan(d*x+c)^(1/2)-2/7*a^2/d/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(7/2)-2/7*I*a^2/d/(a+I*a*tan(d*x+c)
)^(1/2)/tan(d*x+c)^(5/2)-16/35*I*a*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)+76/105*a*(a+I*a*tan(d*x+c))^(1/
2)/d/tan(d*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.45, antiderivative size = 235, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3634, 3677, 3679, 12, 3625, 211} \begin {gather*} \frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(3/2)/Tan[c + d*x]^(9/2),x]

[Out]

((2 - 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a^2)/(7*d*
Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]]) - (((2*I)/7)*a^2)/(d*Tan[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*
x]]) - (((16*I)/35)*a*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + d*x]^(5/2)) + (76*a*Sqrt[a + I*a*Tan[c + d*x]])/(
105*d*Tan[c + d*x]^(3/2)) + (((268*I)/105)*a*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2}{7} \int \frac {-\frac {13 i a^2}{2}+\frac {15}{2} a^2 \tan (c+d x)}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-4 i a^3+3 a^3 \tan (c+d x)\right )}{\tan ^{\frac {7}{2}}(c+d x)} \, dx}{7 a^2}\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {4 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {19 a^4}{2}+8 i a^4 \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx}{35 a^3}\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {8 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {67 i a^5}{4}-\frac {19}{2} a^5 \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{105 a^4}\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}}-\frac {16 \int -\frac {105 a^6 \sqrt {a+i a \tan (c+d x)}}{8 \sqrt {\tan (c+d x)}} \, dx}{105 a^5}\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}}+(2 a) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}}-\frac {\left (4 i a^3\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2}{7 d \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i a^2}{7 d \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {16 i a \sqrt {a+i a \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {76 a \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {268 i a \sqrt {a+i a \tan (c+d x)}}{105 d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.26, size = 224, normalized size = 0.95 \begin {gather*} -\frac {2 i \sqrt {2} a e^{-i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )}{d \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}}}-\frac {a \csc ^3(c+d x) (7 \cos (c+d x)+53 \cos (3 (c+d x))-378 i \sin (c+d x)+158 i \sin (3 (c+d x))) \sqrt {a+i a \tan (c+d x)}}{210 d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(3/2)/Tan[c + d*x]^(9/2),x]

[Out]

((-2*I)*Sqrt[2]*a*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*ArcTa
nh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])/(d*E^(I*(c + d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/
(1 + E^((2*I)*(c + d*x)))]) - (a*Csc[c + d*x]^3*(7*Cos[c + d*x] + 53*Cos[3*(c + d*x)] - (378*I)*Sin[c + d*x] +
 (158*I)*Sin[3*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]])/(210*d*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 456 vs. \(2 (188 ) = 376\).
time = 0.19, size = 457, normalized size = 1.94

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (105 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+420 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{4}\left (d x +c \right )\right )-105 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+152 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+536 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-96 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-60 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{210 d \tan \left (d x +c \right )^{\frac {7}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(457\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (105 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+420 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{4}\left (d x +c \right )\right )-105 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+152 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+536 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-96 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-60 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{210 d \tan \left (d x +c \right )^{\frac {7}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(457\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

1/210/d*(a*(1+I*tan(d*x+c)))^(1/2)*a/tan(d*x+c)^(7/2)*(105*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4+420*I*ln(1/2*(2*I*a*t
an(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^4-105*
(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(ta
n(d*x+c)+I))*a*tan(d*x+c)^4+152*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+53
6*I*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-96*I*tan(d*x+c)*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)-60*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(
1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2883 vs. \(2 (175) = 350\).
time = 0.99, size = 2883, normalized size = 12.27 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

-1/420*(3*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(((280*I + 280)*a*cos(7*d*x +
 7*c) - (140*I + 140)*a*cos(5*d*x + 5*c) + (133*I + 133)*a*cos(3*d*x + 3*c) + (47*I + 47)*a*cos(d*x + c) + (28
0*I - 280)*a*sin(7*d*x + 7*c) - (140*I - 140)*a*sin(5*d*x + 5*c) + (133*I - 133)*a*sin(3*d*x + 3*c) + (47*I -
47)*a*sin(d*x + c))*cos(7/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + 4*(47*(-(I + 1)*a*cos(d*x + c)
 - (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + 47*(-(I + 1)*a*cos(d*x + c) - (I - 1)*a*sin(d*x + c))*sin(2*d*
x + 2*c)^2 + 70*((I + 1)*a*cos(2*d*x + 2*c)^2 + (I + 1)*a*sin(2*d*x + 2*c)^2 - (2*I + 2)*a*cos(2*d*x + 2*c) +
(I + 1)*a)*cos(3*d*x + 3*c) + 94*((I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c) - (47*I +
47)*a*cos(d*x + c) + 70*((I - 1)*a*cos(2*d*x + 2*c)^2 + (I - 1)*a*sin(2*d*x + 2*c)^2 - (2*I - 2)*a*cos(2*d*x +
 2*c) + (I - 1)*a)*sin(3*d*x + 3*c) - (47*I - 47)*a*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x
 + 2*c) + 1)) + ((280*I - 280)*a*cos(7*d*x + 7*c) - (140*I - 140)*a*cos(5*d*x + 5*c) + (133*I - 133)*a*cos(3*d
*x + 3*c) + (47*I - 47)*a*cos(d*x + c) - (280*I + 280)*a*sin(7*d*x + 7*c) + (140*I + 140)*a*sin(5*d*x + 5*c) -
 (133*I + 133)*a*sin(3*d*x + 3*c) - (47*I + 47)*a*sin(d*x + c))*sin(7/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x +
 2*c) + 1)) + 4*(47*(-(I - 1)*a*cos(d*x + c) + (I + 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + 47*(-(I - 1)*a*cos
(d*x + c) + (I + 1)*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 70*((I - 1)*a*cos(2*d*x + 2*c)^2 + (I - 1)*a*sin(2*d*
x + 2*c)^2 - (2*I - 2)*a*cos(2*d*x + 2*c) + (I - 1)*a)*cos(3*d*x + 3*c) + 94*((I - 1)*a*cos(d*x + c) - (I + 1)
*a*sin(d*x + c))*cos(2*d*x + 2*c) - (47*I - 47)*a*cos(d*x + c) + 70*(-(I + 1)*a*cos(2*d*x + 2*c)^2 - (I + 1)*a
*sin(2*d*x + 2*c)^2 + (2*I + 2)*a*cos(2*d*x + 2*c) - (I + 1)*a)*sin(3*d*x + 3*c) + (47*I + 47)*a*sin(d*x + c))
*sin(3/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)))*sqrt(a) + 420*(2*(-(I + 1)*a*cos(2*d*x + 2*c)^4 -
(I + 1)*a*sin(2*d*x + 2*c)^4 + (4*I + 4)*a*cos(2*d*x + 2*c)^3 - (6*I + 6)*a*cos(2*d*x + 2*c)^2 + 2*(-(I + 1)*a
*cos(2*d*x + 2*c)^2 + (2*I + 2)*a*cos(2*d*x + 2*c) - (I + 1)*a)*sin(2*d*x + 2*c)^2 + (4*I + 4)*a*cos(2*d*x + 2
*c) - (I + 1)*a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arct
an2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos
(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - sin(d*x + c)) + (-(I - 1)
*a*cos(2*d*x + 2*c)^4 - (I - 1)*a*sin(2*d*x + 2*c)^4 + (4*I - 4)*a*cos(2*d*x + 2*c)^3 - (6*I - 6)*a*cos(2*d*x
+ 2*c)^2 + 2*(-(I - 1)*a*cos(2*d*x + 2*c)^2 + (2*I - 2)*a*cos(2*d*x + 2*c) - (I - 1)*a)*sin(2*d*x + 2*c)^2 + (
4*I - 4)*a*cos(2*d*x + 2*c) - (I - 1)*a)*log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2
*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2
*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d
*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*si
n(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*
d*x + 2*c) + 1)^(1/4)*sqrt(a) + ((1249*(-(I + 1)*a*cos(d*x + c) - (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 +
 1249*(-(I + 1)*a*cos(d*x + c) - (I - 1)*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 840*(-(I + 1)*a*cos(2*d*x + 2*c)
^2 - (I + 1)*a*sin(2*d*x + 2*c)^2 + (2*I + 2)*a*cos(2*d*x + 2*c) - (I + 1)*a)*cos(5*d*x + 5*c) + 1960*((I + 1)
*a*cos(2*d*x + 2*c)^2 + (I + 1)*a*sin(2*d*x + 2*c)^2 - (2*I + 2)*a*cos(2*d*x + 2*c) + (I + 1)*a)*cos(3*d*x + 3
*c) + 2498*((I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c) - (1249*I + 1249)*a*cos(d*x + c)
 + 840*(-(I - 1)*a*cos(2*d*x + 2*c)^2 - (I - 1)*a*sin(2*d*x + 2*c)^2 + (2*I - 2)*a*cos(2*d*x + 2*c) - (I - 1)*
a)*sin(5*d*x + 5*c) + 1960*((I - 1)*a*cos(2*d*x + 2*c)^2 + (I - 1)*a*sin(2*d*x + 2*c)^2 - (2*I - 2)*a*cos(2*d*
x + 2*c) + (I - 1)*a)*sin(3*d*x + 3*c) - (1249*I - 1249)*a*sin(d*x + c))*cos(5/2*arctan2(sin(2*d*x + 2*c), -co
s(2*d*x + 2*c) + 1)) + 832*(((I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^4 + ((I + 1)*a*
cos(d*x + c) + (I - 1)*a*sin(d*x + c))*sin(2*d*x + 2*c)^4 + 4*(-(I + 1)*a*cos(d*x + c) - (I - 1)*a*sin(d*x + c
))*cos(2*d*x + 2*c)^3 + 6*((I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + 2*(((I + 1)*a
*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + 2*(-(I + 1)*a*cos(d*x + c) - (I - 1)*a*sin(d*x +
c))*cos(2*d*x + 2*c) + (I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 4*(-(I + 1)*a*cos
(d*x + c) - (I - 1)*a*sin(d*x + c))*cos(2*d*x + 2*c) + (I + 1)*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(1/
2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + (1249*(-(I - 1)*a*cos(d*x + c) + (I + 1)*a*sin(d*x + c))
*cos(2*d*x + 2*c)^2 + 1249*(-(I - 1)*a*cos(d*x ...

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 491 vs. \(2 (175) = 350\).
time = 0.38, size = 491, normalized size = 2.09 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (211 \, a e^{\left (9 i \, d x + 9 i \, c\right )} - 160 \, a e^{\left (7 i \, d x + 7 i \, c\right )} + 14 \, a e^{\left (5 i \, d x + 5 i \, c\right )} + 280 \, a e^{\left (3 i \, d x + 3 i \, c\right )} - 105 \, a e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 105 \, {\left (d e^{\left (8 i \, d x + 8 i \, c\right )} - 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) + 105 \, {\left (d e^{\left (8 i \, d x + 8 i \, c\right )} - 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right )}{210 \, {\left (d e^{\left (8 i \, d x + 8 i \, c\right )} - 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

-1/210*(4*sqrt(2)*(211*a*e^(9*I*d*x + 9*I*c) - 160*a*e^(7*I*d*x + 7*I*c) + 14*a*e^(5*I*d*x + 5*I*c) + 280*a*e^
(3*I*d*x + 3*I*c) - 105*a*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)
/(e^(2*I*d*x + 2*I*c) + 1)) - 105*(d*e^(8*I*d*x + 8*I*c) - 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) -
 4*d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I
*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(-8*I*a^3/d^2)*d*e^(I*d
*x + I*c))*e^(-I*d*x - I*c)/a) + 105*(d*e^(8*I*d*x + 8*I*c) - 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c
) - 4*d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(
2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-8*I*a^3/d^2)*d*e^(
I*d*x + I*c))*e^(-I*d*x - I*c)/a))/(d*e^(8*I*d*x + 8*I*c) - 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c)
- 4*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)/tan(d*x+c)**(9/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3878 deep

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(9/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regu
lar value [

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(3/2)/tan(c + d*x)^(9/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(3/2)/tan(c + d*x)^(9/2), x)

________________________________________________________________________________________